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Abstract 

Real-time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber-

physical technique that offers the opportunity for system evaluation of civil structures 

subject to extreme dynamic loading. Advances in this field are enabling researchers to 

evaluate new structural components/systems in cost-effective and efficient ways, under 

more realistic conditions. In RTHS, the response of a structural system is simulated by 

partitioning it into physical and numerical substructures, and coupling at the interface is 

achieved by enforcing equilibrium and compatibility in real-time.  
The choice of partitioning parameters will influence the overall success of the 

experiment. In addition, due to the dynamics of the transfer system, communication delays, 

and computation delays, the interaction force signals are dependent on the system state 

subject to delay. Thus, the transfer system dynamics must be accommodated by appropriate 

actuator controllers. In light of this, guidelines should be established to facilitate successful 

RTHS and clearly specify, (i) the minimum requirements of the transfer system control, 

(ii) the minimum required sampling frequency, and (iii) the most effective ways to stabilize 

an unstable simulation due to the limitations of the available transfer system. Moreover, to 

predict and evaluate the accuracy with various partitioning choices while incorporating the 

dynamics of the transfer system and computational/communication delays, performance 

indicators need to be developed. 

In this study, new stability and performance indicators, predictive stability indicator 

(PSI) and predictive performance indicator (PPI), are proposed to predict the stability 

margin and performance of an RTHS system prior to its implementation. PSI and PPI 

assess how transfer system dynamics and computational/communication delays, which are 

the significant sources of systematic experimental error in RTHS, destabilize and distort 

RTHS responses. Moreover, along with the RTHS stability switch criterion, predictive 

stability and performance indicators might be used in developing acceptance criteria for 

conducting single-degree-of-freedom (SDOF) RTHS. 
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Chapter 1

Background

1.1 Introduction

As civil engineering structures evolve to meet the needs of future generations, there is an increasing
demand to address ongoing challenges such as demonstrating the effectiveness of performance-
based design, considering soil-structure interaction, utilizing new materials capable of reducing
earthquake impact, and improving retrofitting strategies (Dyke et al., 2010). These challenges
justify the need for extending and evolving our experimental capabilities for evaluating structural
response and performance in a suitable and cost-effective manner. Currently, there exist three main
experimental methods to evaluate structural behavior in the presence of dynamic loads, (1) shake
table testing, (2) quasi-static testing, and (3) hybrid simulation (Mosqueda et al., 2005).

Shake table testing enables researchers to achieve realistic test conditions and evaluate criti-
cal issues such as collapse mechanisms, component failures, acceleration amplifications, residual
displacements and post-earthquake capacities, independently (Schellenberg and Mahin, 2006). In
the seismic evaluation of civil structures using shake table testing, a researcher needs to know the
actuator’s required peak velocity (directly related to the oil flow rate provided by the pumping
system and servo-valve), the rated capacity of the actuator, the maximum stroke, and the actuator
frequency bandwidth (Dihoru and Bonzi, 2010). To design a test considering these well-defined
parameters, there is usually no stability concern, and the results are reliable. However, since very
few shake tables in the world are capable of testing full-scale large civil structures and those exper-
iments may be prohibitively expensive, shake table testing is usually limited to prototypes, limited
in payload, and often conducted for critical parts of a structure at the component level (Shing et al.,
1996).

Quasi-static testing is another experimental technique in which the structure (or the structural
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1.1. INTRODUCTION Maghareh, et al.

component) under investigation is subject to a predefined displacement history at a slow rate. One
of the most important advantages of the quasi-static testing compared to the shake table testing is
that it does not require dynamic loading even though it is an experimental technique for evaluat-
ing the dynamic performance of structures. Since quasi-static loading actuators have much more
capacity than dynamic actuators, the quasi-static technique enables researchers to conduct large-
or full-scale experiments and closely observe the performance of the structure under investiga-
tion (Nakashima et al., 1992). Currently, this technique is usually applied to study the hysteretic
and cyclic behavior of structural components subject to seismic loading (Carrion and Spencer,
2007). While quasi-static testing can be implemented on large civil structures, it has two major
drawbacks, it requires a predefined displacement history (Shing and Mahin, 1984), and it does not
preserve rate-dependence while evaluating the dynamic performance of structures.

Hybrid simulation (HS) is a cost-effective experimental technique used to evaluate the dynamic
performance of large civil structures. In the late 80s, a number of researchers had shown that re-
sults of HS and shake table tests are comparable if experimental errors are effectively mitigated in
conducting HS (Takanashi and Nakashima, 1987; Mahin et al., 1989). In hybrid simulation, the
structure under investigation (i.e. the reference structure) is partitioned into two substructures, (i) a
physical (or experimental) substructure, which usually includes the structure’s more complex com-
ponents, and (ii) a numerical (or analytical) substructure, which usually includes well-understood
components. Coupling between the two substructures is achieved by enforcing equilibrium and
compatibility at the interface (Chen et al., 2012). One of the critical assumptions for conducting
HS is that the effect of loading rate on the interaction force of the numerical substructure is insignif-
icant. This critical assumption has been validated for some structural materials, such as reinforced
concrete and steel under certain conditions (Nakashima et al., 1992). However, with the introduc-
tion of new structural components and devices with rate-dependent behavior for seismic protection
(e.g. rubber bearings, viscous dampers, friction dampers, sloshing dampers, magneto-rheological
dampers, and electro-rheological dampers), conventional quasi-static testing and hybrid simula-
tion are unable to effectively evaluate the dynamic performance of these rate-dependent structural
components (Nakashima et al., 1992). Therefore, the need to examine the dynamic performance
of rate-dependent structural components leads researchers to conduct fast hybrid simulation and
real-time hybrid simulation.

Real-time hybrid simulation is a powerful experimental technique used to evaluate the perfor-
mance of civil structures, especially, when rate-dependence plays a role. In RTHS, the interface in-
teraction between the substructures is enforced by a transfer system which includes servo-hydraulic
actuator(s) and/or a shake table (Wallace et al., 2005). The transfer system needs to be designed
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Ground Acceleration

(a) Reference structure

Numerical Substructure

Physical Substructure

Ground Acceleration Displacement

Measured Force

(b) Real-time hybrid simulation

Figure 1.1: A typical real-time hybrid simulation of a two-story structure.

and controlled such that all the interface boundary conditions are satisfied in real-time (Wagg and
Stoten, 2001). Fig. 1.1 depicts a real-time hybrid simulation of a two-story structure where hy-
draulic actuators are used to achieve the interface boundary conditions.

A number of researchers have used this cyber-physical technique to successfully evaluate the
seismic performance of structures, examine different structural control algorithms and techniques,
and develop guidelines for the implementation of damping systems in civil infrastructures. Many
examples of this can be found in the project repository of the George E. Brown Network for Earth-
quake Engineering Simulation (http://www.nees.org/). To name a few, Mosqueda, et al. evolved
the use of more complex structural models employed in RTHS using geographically-distributed
substructures and investigated the procedures for evaluating the reliability of the results in real-
time (Mosqueda et al., 2007a,b, 2005). Christenson, et al. implemented RTHS to evaluate the
relative efficacy of smart damping control devices (Christenson et al., 2008) and Shao, et al. con-
ducted force-based substructuring in RTHS (Shao et al., 2011). Gao and Castaneda implemented
and validated small-scale frame structural configurations equipped with damper devices to develop
a robust framework for RTHS (Gao, 2012; Castaneda et al., 2012). In addition, Chae developed a
performance-based design procedure for structures with MR dampers using RTHS (Chae, 2011).

RTHS is a complex cyber-physical technique, and the configuration of the test affects how well
the researcher is able to achieve his/her goals. Stability and performance of RTHS are mainly a
function of four conditions, (1) the overall dynamics of the reference structure, (2) the fidelity of
the numerical substructure, (3) how the reference structure is partitioned into the numerical and
physical substructures, and (4) how well the interface boundary conditions are enforced by the
transfer system. Several researchers have investigated the impact of these entities on stability and
accuracy of simulations (Darby et al., 2002; Mosqueda et al., 2007a,b; Chen and Ricles, 2009a;
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1.1. INTRODUCTION Maghareh, et al.

Gao, 2012; Chen et al., 2013; Maghareh et al., 2012). Furthermore, to complete the work carried
out on stability of RTHS systems, Maghareh, et al. proposed a pre-experiment performance metric,
predictive performance indicator (PPI), to predict the performance of RTHS systems prior to its
implementation (Maghareh et al., 2013).

Errors occur in RTHS from three different sources, model idealization, numerical integration,
and experimental errors. First, modeling error arises from any discrepancies between the response
of the actual (or real) portion modeled as numerical substructure and the response acquired from its
model. Second, in RTHS, explicit or implicit integration schemes are utilized to solve the idealized
numerical substructure. A very significant characteristic of the explicit methods, which makes it
more attractive for conducting RTHS, is that with this approach all the numerical computations are
processed in a consistent predictable amount of time. Using explicit schemes, the next state of the
structure is computed merely based on the current state and the input. In HS and RTHS, the fact
that in the explicit schemes the actuator command is computed without prior knowledge of the sys-
tem’s response is a major source of numerical error. Depending upon which integration scheme is
adopted, stability and accuracy issues may be limiting factors (Mosqueda et al., 2005). Moreover,
in the implementation of RTHS with more sophisticated reference structures (particularly, the nu-
merical substructure), parallel scheduling has become increasingly important due to the advances
in multiprocessor systems and the high computational demand in the numerical substructure. In an
attempt to address this issue, Li, et al. designed, implemented and evaluated a practical real-time
platform that efficiently runs sporadic parallel task sets with implicit deadlines (Li et al., 2013).
Finally, in RTHS, there are a number of experimental sources of error which can be categorized as
epistemic (or systematic) and aleatoric (or random) errors. Sources of epistemic errors are system-
atic, such as transfer system dynamics, computational delays, communication delays, and sensor
miscalibration. However, sources of aleatoric errors are random, such as measurement noise and
random truncations in the analog-to-digital (AD) conversions of signals.

Existing RTHS performance (or accuracy) indicators can be divided into three categories, (i)
indicators computed prior to an experiment (pre-experiment) to enable a researcher to predict the
susceptibility of an RTHS configuration to any systematic or random sources of error, (ii) indi-
cators computed during the experiment (online) to enable a researcher to evaluate the quality of
RTHS responses and detect unacceptable results in real-time, and (iii) indicators computed after
the experiment (post-experiment) to enable a researcher to assess the quality of RTHS responses
with respect to reference responses in the RTHS data analysis process. Pre-experiment indicators
are necessary for users to assess the accuracy of RTHS responses, to develop the minimum require-
ments with respect to any user-defined acceptance criterion, and to assist researchers in enhancing
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the performance of RTHS responses more effectively. Thus, a number of researchers developed
techniques to determine and alleviate the impact of the systematic errors in RTHS on the overall
performance of the system. To name a couple, Horiuchi, et al. have developed an effective viscous
damping for a linear elastic specimen and a constant feedback delay (Horiuchi et al., 1999) and
Mosqueda, et al. estimated the effective damping ratio of a SDOF RTHS with a constant time de-
lay (Mosqueda et al., 2007b). Later, an online energy indicator, hybrid simulation error monitors
(HSEM), was developed to assess the quality of RTHS responses in real-time (Mosqueda et al.,
2007a,b). In these studies, Mosqueda, et al. investigated the impact of experimental errors on
linear and nonlinear seismic responses of structures using HSEM. Moreover, this indicator also
serves as a basis for an RTHS safety system to cease the simulation, examine the source of error,
and possibly correct the issue. Finally, towards RTHS data analysis process and in the presence
of reference responses, researchers have been using a number of time-based or frequency-based
indicators to assess the quality of RTHS responses.

In this report, chapter one and two are focused on modeling and stability of SDOF RTHS sys-
tem, respectively. In chapter one, RTHS is modeled by a set of delay differential equations (DDEs).
The objective of chapter two is twofold, (i) to establish an RTHS stability switch criterion, and (ii)
to develop an RTHS design guideline associated with the minimum requirements for the transfer
system control and sampling frequency. The main parameters investigated in this chapter are, (1)
the structural characteristics of the reference structure (e.g. natural frequency, damping ratio, and
structural nonlinearity), (2) the partitioning parameters, and (3) the transfer system time delay asso-
ciated with the feedback force signal. Finally, in this chapter, we propose a new stability indicator,
predictive stability indicator (PSI), to predict the stability margin of a SDOF RTHS configuration.
In chapter three, the objective is to propose a new performance indicator, predictive performance
indicator (PPI), to predict the performance of an RTHS system prior to its implementation. This
metric assesses how transfer system dynamics and computational/communication delays, which
are the significant sources of systematic experimental error in RTHS, distort RTHS responses and
how the corresponding error propagates through the entire RTHS. This indicator is developed in a
way to be reconcilable with the RTHS stability switch criterion. Moreover, along with the RTHS
stability switch criterion, the PSI and PPI may be utilized to establish a pre-experiment acceptance
criteria in RTHS. In chapter four, the utility of the RTHS stability switch criterion, PSI, and PPI
is illustrated by providing three different types of examples, virtual RTHS with pure time delay,
virtual RTHS with time delay and transfer system dynamics, and an actual RTHS example. Fi-
nally, chapter five contains concluding remarks on the proposed predictive indicators for stability
and performance of SDOF RTHS.
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1.2 Modeling of RTHS Systems

The governing equation of a general reference structure can be expressed as

[M ]Ẍ(t) + [C]Ẋ(t) +R(X) = −[M ]Γẍg(t) (1.1)

where [M ], [C], R(X), Γ, X(t), and ẍg(t) are the structure’s mass matrix, damping matrix, restor-
ing force vector, influence vector, displacement vector, and ground acceleration, respectively. In
RTHS, the reference structure is partitioned into numerical and physical substructures

{[M ], [C], R(X)} = {[Mp], [Cp], Rp(X)}+ {[Mn], [Cn], Rn(X)} (1.2)

where p and n indices refer to the physical and numerical substructures. The governing equation
of the numerical substructure can be expressed as

[Mn]Ẍ(t) + [Cn]Ẋ(t) +Rn(X) = −[M ]Γẍg(t)− Ffb(t) (1.3)

where Ffb(t) is the interaction force (or feedback force) vector measured in the physical substruc-
ture and used as a feedback signal into the numerical substructure. In an ideal case, Ffb(t) can be
defined as

Ffb(t) = [Mp]Ẍ(t) + [Cp]Ẋ(t) +Rp(X). (1.4)

Combining Eqs. (1.3) and (1.4) yields the governing equation of the reference structure in Eq.
(1.1). However, the ideal case requires perfect control of the transfer system, no measurement
noise, no time delay, and that all the boundary conditions are satisfied perfectly. Due to transfer
system control limitations and computational/communication time delay, the governing equation
of an RTHS system becomes

[Mn]Ẍ(t) + [Cn]Ẋ(t) +Rn(X) = −[M ]Γẍg(t)− T{
∑

aiFfb(t− τi),
∑

biḞfb(t− τi), . . .}
(1.5)

where T{. . .} is an operator representing the effect of the transfer system dynamics and Ffb(t− τ)

indicates time delay in the interaction force signal.
In RTHS, time lags and time delays can be classified into three major categories, (1) commu-

nication delays, (2) computational delays, and (3) transfer system dynamics. No matter which
control (or compensation) strategy is adopted, there is always a frequency-dependent phase shift
between the command input and the realization of the command by the transfer system which is
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referred as time lag (or system dynamics). Time delay and system dynamics are two different
concepts which are sometimes used interchangeably. Fig. 1.2 demonstrates a general distributed
RTHS architecture with multiple physical and numerical substructures. In addition, the presence
of the communication and computational delays and transfer system dynamics are shown.

Figure 1.2: General distributed RTHS architecture.

1.2.1 Communication Delay

To implement RTHS, there is a continuous exchange of information between the cyber and physi-
cal components. In RTHS, communication delays vary from almost negligible for an RTHS using a
single processor (no network) to more than a hundred milliseconds for geographically-distributed
testing. Geographically-distributed RTHS presents a challenge in which the required communi-
cation over the internet results in random delays (Mosqueda et al., 2005). Thus, communication
delays become especially significant when conducting geographically-distributed RTHS (Carrion
and Spencer, 2007), see Fig. 1.3.

13
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Figure 1.3: Communication delay.

1.2.2 Computational Delay

In RTHS, integration schemes are implemented to solve the discretized governing equation of the
numerical substructure. Stability and performance issues are limiting factors which determine the
maximum permissible computational time and the largest natural frequency of the numerical model
in a linear case. In RTHS, all computations are executed on processors and then the command sig-
nal is implemented using a digital-to-analog convertor (DAC). One of the most common methods
is the zero-order hold method (ZOH) shown in Fig. 1.4. In this method, the signal is held constant
during the integration time-step. The transfer function of the ZOH method can be expressed as

HZOH(s) =
1− e−sT

sT
(1.6)

where s ∈ C is the Laplace variable and T is the integration time-step. By applying the Tylor
expansion, HZOH(s) can be written as

HZOH(s) =
1− (1− sT + (sT )2/2 + o(T 3))

sT
= 1− sT

2
+ o(T 2). (1.7)

For a relatively small integration time-step, Eq. (1.7) can be approximated with

HZOH(s) = 1− sT

2
+ o(T 2) ≈ e−sT/2. (1.8)
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Thus, the effect of the ZOH conversion on the signal is approximately equal to that of a time delay
of T/2 = (2fs)

−1 where fs is the sampling frequency in Hz.

Time

S
ig
n
a
l

 

 

TT

Signal Without DA Conversion
Delayed Signal (τ = 0.5T)
ZOH Converted Signal

Figure 1.4: Computational delay.

1.2.3 Transfer System Dynamics

No matter which control strategy is adopted, there is always a time lag between the command input
and the realization of the command by the transfer system which is usually frequency dependent.
Furthermore, Dyke, et al. analyzed the effects of control-structure interaction (CSI) and demon-
strated that the dynamics of a hydraulic actuator, a common type of transfer system in RTHS, and
the plant are coupled through a natural velocity feedback, see Fig. 1.5. So, the time lag is caused
by both actuator dynamics and the attached specimen (Dyke et al., 1995) and is not a pure time de-
lay. However, the contribution of the actuator dynamics is dominant (Zhao et al., 2003) and within
a typical seismic frequency bandwidth, experimental studies have demonstrated that a linearized
actuator model can capture the essential dynamics of the actuator (Gao, 2012).
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Figure 1.5: Control-structure Interaction.

Typically, for a SDOF RTHS, the natural frequency of the attached specimen in RTHS is large
compared to the seismic frequency bandwidth. Therefore, the phase of the actuator frequency
response function can be approximated as linear and modeled as a pure time delay (Carrion and
Spencer, 2007). Typical values for actuator time lags reported in the literature range from 8 to 30
msec (Horiuchi et al., 1999; Darby et al., 2002; Shing et al., 2004).

Figure 1.6: Servo-hydraulic actuator as a common transfer system.

1.2.4 Time Delay and System Dynamics (or Time Lag)

Time delay and system dynamics are two different concepts which are sometimes used inter-
changeably. To delineate the difference, this work compares the dynamics of a servo-hydraulic
actuator model with a time delay system in the frequency domain. A time delay system, and a
linear system dynamics can be mathematically expressed as

x(t) = u(t− τ) (1.9a)

x(n)(t) + . . .+ a0x(t) = bmu
(m)(t) + . . .+ b1u(t) + b0 (1.9b)
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where u(t), x(t) and τ are the system input, system output and time delay value, respectively.
A very common type of transfer system in RTHS is a controlled servo-hydraulic actuator. For
a more realistic comparison, a servo-hydraulic actuator shown in Fig. 1.6, was identified at the
Intelligent Infrastructure System Lab (IISL) at Purdue University. The identified dynamics of the
servo-hydraulic actuator, which corresponds to measured displacement to command displacement,
is given by

xmsd(s)

xcmd(s)
=

2.382× 109

s4 + 485.5s3 + 1.317× 105s2 + 3.182× 107s+ 2.382× 109
(1.10)

Fig. 1.7 provides the frequency responses of the servo-hydraulic actuator and a pure time delay
system.
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Figure 1.7: Frequency responses of the hydraulic actuator and a pure time delay system.

Clearly, over a relatively low frequency bandwidth, the responses of the pure time delay and
transfer system dynamics are quite similar. In RTHS, the frequency bandwidth of interest is the
seismic frequency bandwidth and it is restricted to a low frequency bandwidth. Therefore, over
a relatively low frequency bandwidth, we can model the dynamic interaction of a transfer system
and the physical substructure with a constant time delay (Christenson et al., 2008; Maghareh et al.,
2012). Thus, in this study on SDOF systems, Eq. (1.5) is replaced by Eqs. (1.11a) and (1.11b) in
which the communication delay, computational delay, and transfer system dynamics are all lumped
into a single time delay (τ ) which acts upon the interaction force signal.

[Mn]ẍ(t) + [Cn]ẋ(t) +Rn(x) = −[M ]Γẍg(t)− Ffb(t− τ) (1.11a)

Ffb(t) = [Mp]ẍ(t) + [Cp]ẋ(t) +Rp(x) (1.11b)
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(a) Reference Structure (b) Real-time Hybrid Simulation

Figure 1.8: Schematic diagram of a SDOF RTHS.

1.3 Single-Degree-of-Freedom RTHS

Consider a linear single-degree-of-freedom (SDOF) reference structure with a seismic excitation
input, as follows

Mẍ(t) + Cẋ(t) +Kx = −Mẍg(t) (1.12)

where M,C,and K are the reference structure’s mass, damping, stiffness, respectively.
For a SDOF RTHS, the reference structure is partitioned into the numerical and physical sub-

structures, as shown in Fig. 1.8. The governing equation of the SDOF RTHS shown in Fig. 1.8, is
approximated as a delay differential equation of the form

Mnẍ(t) + Cnẋ(t) +Knx = −Mẍg(t)− Ffb(t− τ) (1.13a)

Ffb(t) = Mpẍ(t) + Cpẋ(t) +Kpx. (1.13b)

Eqs. (1.13a) and (1.13b) provide a basis for (i) investigating the impact of time delay on the
modal characteristics of a SDOF RTHS, and (ii) establishing stability and performance metrics for
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effective RTHS implementation.
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Chapter 2

Stability

To conduct a stability analysis of linear RTHS systems, a general geometric stability switch cri-
terion in delay differential equations can be implemented to establish an RTHS stability switch
criterion. A more detailed discussion on the general geometric stability switch criterion is pro-
vided in (Wallace et al., 2005; Beretta and Kuang, 2002).

2.1 An RTHS Stability Switch Criterion

Consider a linear single-degree-of-freedom (SDOF) reference structure with a seismic excitation,
as follows.

Mẍ(t) + Cẋ(t) +Kx = −Mẍg(t) (2.1)

where M,C,and K are the reference structure’s mass, damping, and stiffness, respectively. For
SDOF RTHS, the reference structure is partitioned into numerical and physical substructures, as
shown in Fig. 1.8. The governing equation of the SDOF RTHS shown in Fig. 1.8 is

Mnẍ(t) + Cnẋ(t) +Knx = −Mẍg(t)− Ffb(t− τ) (2.2a)

Ffb(t) = Mpẍ(t) + Cpẋ(t) +Kpx. (2.2b)

To study the response of this RTHS system, we use the Laplace transform in which

L[. . .](s) =

∫ ∞
−∞

. . . e−stdt (2.3)
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where s ∈ C is the Laplace variable. The response of the reference structure, Eq. (2.1), is given by

xREF (s) =
−M

Ms2 + Cs+K
ẍg(s) (2.4)

In the absence of a feedback time delay (τ = 0), the response of the RTHS system in Fig. 1.8 can
be expressed as

xRTHS(s) =
−M

Mns2 + Cns+Kn

ẍg(s)−
Mps

2 + Cps+Kp

Mns2 + Cns+Kn

xRTHS(s) (2.5)

therefore,
Ms2 + Cs+K

Mns2 + Cns+Kn

xRTHS(s) =
−M

Mns2 + Cns+Kn

ẍg(s) (2.6)

and
xRTHS(s) = xREF (s) =

−M
Ms2 + Cs+K

ẍg(s) (2.7)

Thus, in the absence of feedback time delay, the response of an RTHS system is identical to the
response of the reference structure. However, in the presence of feedback time delay, the response
of the RTHS system is

xRTHS(s) =
−M

(Mns2 + Cns+Kn) + (Mps2 + Cps+Kp)e−τs
ẍg(s) (2.8)

and the resulting characteristic equation can be written as

Γ(λ, τ) = (Mnλ
2 + Cnλ+Kn) + (Mpλ

2 + Cpλ+Kp)e
−τλ (2.9)

where λ ∈ C. Eq. (2.9) can be expressed as

Γ(λ, τ) = Γn(λ) + Γp(λ)e−τλ. (2.10)

For a dynamic system to be asymptotically stable about its fixed points, all eigenvalues, which
are the roots of the corresponding characteristic equation, must lie in the left half of the complex
plane. Therefore, stability switching occurs when a root of the characteristic equation crosses the
imaginary axis (i.e. Re(λi) = 0) as some parameters vary in the characteristic equation. If the
partitioning parameters of the RTHS are chosen such that any root of the characteristic equation is
in the right half of the complex plane, then that test configuration will be unstable.

Without loss of generality, it is assumed that the reference structure (τ = 0) is stable (i.e. the
roots of Γ(λ, 0) in Eq. (2.10) lie in the left half of the complex plane). Next, we introduce two
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new terms which are crucial in the theory of delay differential equations, (1) critical frequency
(ωcr = |λcr|) which is the frequency at which a stability switch occurs, and (2) critical time delay
(τcr) which is the time delay associated with the occurrence of a stability switch. In Eq. (2.10),
to obtain the critical frequency and critical time delay associated with Eq. (2.10), one can simply
replace λ, τ with jωcr, τcr and equate Γ(jωcr, τcr) with 0, and express the characteristic equation
as

− Γn(jωcr)

Γp(jωcr)
= e−jτcrωcr = e−jΩcr (2.11)

where j is the imaginary unit number and Ωcr is the product of the critical frequency and its
corresponding critical time delay (Ωcr = τcrωcr). Eq. (2.11) can be solved using the geometric
construction presented in (MacDonald, 1989). As Ωcr increases from 0 to 2π, e−jΩcr traces out a
unit circle in the complex plane and the left hand side of the equation, which is called the ratio

curve, traces out another curve. A stability switch occurs in the system when the unit circle inter-
sects the ratio curve. The intersection can occur multiple times, meaning that the system is stable
within a particular range of time delay, then it will be unstable for a specific range of time delay,
and then the system may gain its stability back as the time delay increases, see Fig. 2.1. For RTHS,
the first occurrence of the instability condition is the most meaningful. Using Eqs. (2.9), (2.10),
and (2.11) the characteristic equation of a SDOF RTHS can be expressed as

−Mnωcr
2 + Cnωcrj +Kn

−Mpωcr2 + Cpωcrj +Kp

= e−jτcrωcr (2.12)

Using Euler’s formula (i.e. e...j = cos . . .+ j sin . . .), Eq. (2.12) can be written as

(−Mnωcr
2 + Cnωcrj +Kn) + (−Mpωcr

2 + Cpωcrj +Kp)(cos(τcrωcr)− j sin(τcrωcr)) = 0

(2.13)
Separating the real and imaginary parts of Eq. (2.13) yields the following system of equations

(Kp −Mpωcr
2) cos(τcrωcr) + Cpωcr sin(τcrωcr) = Mnωcr

2 −Kn (2.14a)

Cpωcr cos(τcrωcr)− (Kp −Mpωcr
2) sin(τcrωcr) = −Cnωcr. (2.14b)

Dividing both sides of Eqs. (2.14a) and (2.14b) by M yields

{(1− γ)ω2
n − (1− α)ω2

cr} cos(τcrωcr) + {2(1− β)ωcrζωn)} sin(τcrωcr) = αω2
cr − γω2

n (2.15a)

{2(1− β)ωcrζωn)} cos(τcrωcr)− {(1− γ)ω2
n − (1− α)ω2

cr)} sin(τcrωcr) = −2ωnζωcrβ (2.15b)
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where {α, β, γ} = {Mn/M , Cn/C, Kn/K} are the partitioning parameters and ζ is damping ratio.
Eqs. (2.15a) and (2.15b) are squared and added together to obtain a 4th order equation governing
how the partitioning factors and the structural characteristics of the reference structure determine
the critical frequency of the RTHS system (ωcr),

(1− 2α)ωcr
4 + ωn

2[4(1− 2β)ζ2 − 2(1− α− γ)]ωcr
2 + (1− 2γ)ωn

4 = 0. (2.16)

Furthermore, Eq. (2.16) is normalized with respect to ωn yielding

(1− 2α)φcr
4 + [4(1− 2β)ζ2 − 2(1− α− γ)]φcr

2 + (1− 2γ) = 0 (2.17)

where φcr = ωcr/ωn is the critical frequency ratio. Eq. (2.17) may lead to 0, 1, or 2 meaningful
critical frequencies (i.e. positive real values). The lowest of the three is associated with the limit
of an unconditionally stable RTHS system. After obtaining φcr from Eq. (2.17), one can solve for
the corresponding critical time delays using Eqs. (2.15a) and (2.15b).

τcr = ωcr
−1[Nπ + tan−1(

A

B
)] (2.18a)

in which

A = [2(1− β)ωcrζωn)][αωcr
2 − γωn2] + [(1− γ)ωn

2 − (1− αωcr2]2ωnζωcrβ (2.18b)

B = [(1− γ)ωn
2 − (1− α)ωcr

2][αωcr
2 − γωn2]− [2(1− β)ωcrζωn)]2ωnζωcrβ (2.18c)

where N = 0, 1, 2, . . . and making sure that Eqs. (2.15a) and (2.15b) are both achieved. Further-
more, Eq. (2.18a) is normalized with respect to ωn and it becomes

Ωcr = τcrωn = φcr
−1[Nπ + tan−1(

A

B
)] (2.19a)

Aωn
−4 = [2(1− β)φcrζ)][αφcr

2 − γ] + [(1− γ)− (1− α)φcr
2]2ζφcrβ (2.19b)

Bωn
−4 = [(1− γ)− (1− α)φcr

2[αφcr
2 − γ]− [2(1− β)φcrζ)]2φcrζβ. (2.19c)

Thus, Eqs. (2.17) and (2.19a) can be used to find the stability characteristics of an RTHS system as
a function of the partitioning parameters and the structural characteristics of the reference structure.
However, it is recommended to first plot the RTHS stability diagram using Eqs. (2.17) and (2.19a),
and then determine the stability characteristics of the RTHS system.
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2.1.1 Stability Diagrams for a Linear SDOF RTHS

This section examines how the values of the partitioning parameters and the structural characteris-
tics of the reference structure affect the stability of a linear RTHS system through the use of RTHS
stability diagrams. Four sample partitioning cases will be considered, see Table 2.1. In Fig. 2.1,
the stability diagrams associated with these sample cases, for 5 different reference damping ratios
(a total of 4× 5 = 20 systems) are examined.

Table 2.1: Partitioning parameters of the nine cases examined

α factor β factor γ factor

Case I ∈ [0, 1] 0.4 0.9

Case II 0.9 0.6 ∈ [0, 1]

Case III ∈ [0, 1] 0.6 0.1

Case IV 0.1 0.4 ∈ [0, 1]

Practically speaking, a more realistic partitioning configuration is one where a majority of the
mass is modeled in the numerical substructure (i.e. α ≈ 1) and a majority of the stiffness is placed
in the physical substructure (i.e. γ ≈ 0). Therefore, the bottom portion of Fig. 2.1b and the top
portion of Fig. 2.1c represent more realistic scenarios. As shown in Fig. 2.1, the more realistic
cases, where α ≈ 1 and γ ≈ 0, are quite challenging configurations in terms of leading to small
values of Ωcr. Some important observations can be made from Fig. 2.1.

• For a specific ζ , the area to the left of the first curve is considered a stable region in RTHS
(i.e. Ω < Ωcr).

• The critical time delay is inversely proportional to the natural frequency of the reference
structure. Thus, higher modes of the reference structure are highly sensitive to time de-
lays. Often for multi-degree-of-freedom systems, higher modes are suppressed with artificial
damping in the numerical substructure (Shing and Mahin, 1984).

• In selecting the partitioning parameters, α ≈ 0.5 is not a good choice from stability and
performance perspectives, see Figs. 2.1a and 2.1c.

• For a particular RTHS configuration, multiple Ωcr exist. Clearly, a stability switch occurs
in the system when the unit circle in Eq. (2.11) intersects the ratio curve, and this can occur
multiple times. Thus, the system is stable within a particular range of Ω, then it will be
unstable for a specific range of Ω, and then the system will again be stable as Ω increases.
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Figure 2.1: Normalized RTHS stability diagrams showing Ωcr.

Although the system may be stable at higher Ω, performance is likely to suffer. Therefore,
it is recommended that to conduct an effective RTHS, users should consider just the first
region of stability.

• As a rule of thumb, the value of critical time delay is closely related to |γ − α|. Thus, larger
value of |γ − α| usually leads to a relatively small critical time delay value.

• Critical time delay usually increases as the reference structure becomes more damped.

• Finally, if stability concerns lead to some changes in a partitioning setup, reducing |γ − α|
and ωn and/or increasing ζ are effective options.

2.1.2 Predictive Stability Indicator (PSI)

Herein, we build on the RTHS stability switch criterion and propose a stability metric which in-
dicates the global stability margin of a SDOF RTHS system with any partitioning choice. For a
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system with the characteristic equation of the form Eq. (2.10), a stability switch occurs when the
unit circle intersects the ratio curve and the intersection can occur multiple times. However, to
develop a stability indicator, the first occurrence of the instability is the most meaningful one. For
a SDOF system of the form Eqs. (2.2a) and (2.2b), the predictive stability indicator can be written
as

PSI = log10(
103 ×min[Ωcr]

ωn
) = log10(min[τcr(msec)]). (2.20)

It should be noted that Eq. (2.20) returns a meaningful value only for the first region of stability
in the RTHS stability diagrams which is the region of interest herein. Therefore, in Eq. (2.21),
we use min{Ωcr} to refer to the switching value of the first region of stability. As shown in
Fig. 2.2, PSI spans between −∞ and +∞ corresponding to the case on the verge of instability to
the unconditionally stable case.

−∞ 0 ∞

On the Verge of Instability Unconditionally Stable

Predictive Stability Indicator (PSI)

Figure 2.2: Predictive stability indicator (PSI) span.

To illustrate how the PSI values are obtained from the RTHS stability diagrams, Figs. 2.3a and 2.3b
illustrate the stability diagrams corresponding to configuration 1: {α = 0.7, β = 0.4, γ = 0.9,
ζ = 0.1} and configuration 2:{α = 0.9, β = 0.6, γ = 0.7, ζ = 0.05}.

26



2.1. AN RTHS STABILITY SWITCH CRITERION Maghareh, et al.

10
−2

10
−1

10
0

10
10

0.2

0.4

0.6

0.8

1

Ω = τωn

α

 

 

min{Ω
cr

}

(a) Configuration 1: α = 0.7, β = 0.4, γ = 0.9, ζ = 0.1
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(b) Configuration 2: α = 0.9, β = 0.6, γ = 0.7, ζ = 0.05

Figure 2.3: Obtaining PSI using RTHS stability diagrams.
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Table 2.2: Predictive stability indicators for different configurations.

ωn(rad/sec) Ωcr(rad) PSI (log(msec))

Configuration 1 3 2.123 6.56

Configuration 1 5 2.123 6.05

Configuration 1 10 2.123 5.36

Configuration 2 3 0.963 5.77

Configuration 2 5 0.963 5.26

Configuration 2 10 0.963 4.57

In Table 2.2, the PSI values associated with the two configurations shown in Fig. 2.3 and three
natural frequencies are listed. As listed in Table 2.2, configuration 1 with ωn = 3rad/sec and
configuration 2 with ωn = 10rad/sec lead to the largest PSI value (i.e. the largest margin of
stability) and the lowest PSI value (i.e. the smallest margin of stability), respectively. It should
be noted that the use of PSI becomes even more significant in implementation of multi-degree-
of-freedom RTHS (or geographically distributed RTHS) because higher modes of the structure
are highly sensitive to time delays and often suppressed with artificial damping in the numerical
substructure.

2.1.3 Unconditionally Stable Region

As noted earlier, Eq. (2.17) may lead to 0, 1, or 2 meaningful critical frequency ratios. For case II
and ζ = 5%, these three regions are shown in Fig. 2.4.
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Figure 2.4: Case II with ζ = 5% a) Normalized RTHS stability diagram showing Ωcr vs. γ
b) Plot of φcr vs. γ showing the three stability regions.
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Using Eq. (2.17), the required condition to have an unconditionally stable region is

(γ − α)<4ζ2(1− 2β)[(1− α− γ)− (1− 2β)ζ2]. (2.21)

Moreover, in terms of α and γ, the range of the unconditionally stable region, which occurs about
γ − α = 0, can be found using the following equation

(γ − α)2 +B(γ − α) + C = 0 (2.22)

where B = 4(1 − 2β)ζ2 and C = −4ζ2(1 − 2β)(1 − 2α − (1 − 2β)ζ2). Using Eq. (2.22), the
resulting unconditionally stable range associated with Case II about γ−α = 0 and associated with
various damping ratios can be obtained, see Fig. 2.5.

0.5% Damping 1% Damping %2 Damping %5 Damping %10 Damping

0.85

0.9

0.95

γ
=

K
n

K

Figure 2.5: Unconditionally stable range associated with case II for different damping ratios.

Thus, in certain RTHS configurations, there is a range about γ − α = 0 in which the system is
unconditionally stable, and within that range, the critical time delay and PSI approaches infinity.
Knowing the unconditionally stable region associated with a partitioning setup can be significant,
especially when conducting geographically-distributed RTHS where data loss and unpredictable
time delays are major challenges.

2.1.4 Minimum Requirements of the Transfer System and Sampling Fre-
quency

After obtaining the critical time delay using the RTHS stability diagrams or Eqs. (2.17) and (2.19a),
one can identify the maximum permissible delay in an RTHS system as the critical time delay.
Therefore, if the interaction force signal has a time delay equal to or greater than the critical time
delay, the system will go unstable. Generally speaking, in SDOF RTHS, the time delay associated
with the interaction force signal is
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τFfb
= τCOMP + τCOMM + τTS (2.23)

where τCOMP , τCOMM , and τTS are computational delay, communication delay, transfer system
delay, respectively. Furthermore, if a ZOH digital-to-analog convertor is used, τCOMP can be
approximated by (2fs)

−1 where fs is the sampling frequency in Hz (Astrom and Wittenmark,
1990). Assuming that in a local RTHS, τCOMM is a known deterministic value. Then, Eq. (2.23)
becomes

τFfb
− τCOMM − (2fs)

−1 = τTS. (2.24)

Therefore, with a given sampling frequency, the stability phase envelope which determines the
minimum control requirements for the transfer system can be expressed as

e−jω(τcr−τCOMM−(2fs)−1) = e−jωτm (2.25)

where τm = τcr − τCOMM − (2fs)
−1.
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Figure 2.6: Stability phase envelope to determine the minimum transfer system control require-
ment.
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As shown in Fig. 2.6, to conduct a stable SDOF RTHS, the phase plot of the transfer system control
must lie above the stability phase envelope shown for a given value of τcr.

2.2 Weakly-Nonlinear SDOF RTHS Systems

This section considers a physical substructure that is composed of weakly-nonlinear materials,
wherein there is a nonlinearity between the materials’ restoring forces and displacements, or com-
posed of linear materials but loaded beyond the proportional limit. Let’s examine how nonlinearity
affects the overall stability of a SDOF RTHS system in the presence of feedback time delay. Con-
sider a lightly-damped reference structure with the governing equation

Mẍ(t) + Cẋ(t) +Kx(t) + ζR(x) = 0 (2.26)

which is equivalent to

ẍ(t) + 2ζωnẋ(t) + ωn
2x(t) + ζM−1R(x) = 0 (2.27)

where ζR(x) represents the weakly-nonlinear component of the restoring force. Weakly-nonlinear
systems can be divided into two categories, (1) strain-hardening and (2) strain-softening. Fig. 2.7
shows the qualitative behaviors of linear, strain-softening, and strain-hardening systems. In this
work, we assume that these nonlinearities can be captured with cubic terms. Thus, Eq. (2.27)
becomes

ẍ(t) + 2ζωnẋ(t) + ωn
2x(t) + ζM−1hx3(t) = 0 (2.28)

where {h < 0, h = 0, h > 0} corresponds to {strain-softening, linear, strain-hardening} systems.
Eq. (2.28) can be partitioned into numerical and physical substructures using the partitioning pa-
rameters, {α, β, γ} = {Mn/M,Cn/C,Kn/K}, yielding

{αẍ(t) + 2ζβωnẋ(t) + γωn
2x(t)}

+ {(1− α)ẍ(t) + 2ζ(1− β)ωnẋ(t) + (1− γ)ωn
2x(t) + ζM−1hx3(t)} = 0

(2.29)

where in the presence of feedback delay, Eq. (2.29) becomes

{αẍ(t) + 2ζβωnẋ(t) + γωn
2x(t)}

+ {(1− α)ẍ(t− τ) + 2ζ(1− β)ωnẋ(t− τ) + (1− γ)ωn
2x(t− τ)}

+ {ζM−1hx3(t− τ)} = 0.

(2.30)
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Figure 2.7: Qualitative behavior of linear strain-softening, and strain-hardening materials.

For a SDOF RTHS system, it has been shown that the presence of a feedback time delay ef-
fectively adds energy into the system (Ahmadizadeh, 2007; Mosqueda et al., 2005; Carrion and
Spencer, 2007). Fig. 2.8 shows desired displacement against the restoring forces of linear and
weakly-nonlinear systems associated with different time delays, where τ1<τ2<τ3. In each case,
the additional energy added to the system is the enclosed area. Clearly, as the time delay becomes
larger, the effective amount of added energy increases. For RTHS, instability occurs when the ad-
ditional energy becomes greater than the energy dissipation in the nominal system (and hysteretic
energy if any) (Ahmadizadeh, 2007). Using the stability switch criterion, we can obtain the critical
time delay associated with the linear system, and the qualitative effects of weak nonlinearity on the
stability of the system can be understood by computing and comparing the enclosed areas shown
in Fig. 2.8.

Linear Systems
In Eq. (2.30), linear systems correspond to systems with h = 0. Therefore, the enclosed area in
Fig. 2.8b, can be computed as

AL(τ) =

∫ x(t1)

x(t0)

(1− γ)K[x(t)− x(t− τ)]dx (2.31a)

AL(τ) =

∫ t1

t0

(1− γ)K[x(t)− x(t− τ)]ẋ(t)dt. (2.31b)
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Figure 2.8: Additional energy due to time delay (τ1<τ2<τ3).

Strain-Softening Systems
In Eq. (2.30), strain-softening systems correspond to systems with h<0. Therefore, the enclosed
area in Fig. 2.8a can be computed as

AS(τ) =

∫ x(t1)

x(t0)

{(1− γ)K[x(t)− x(t− τ)] + ζh[x3(t)− x3(t− τ)]}dx (2.32a)

AS(τ) =

∫ t1

t0

[x(t)− x(t− τ)]{(1− γ)K + ζh[x2(t) + x(t)x(t− τ) + x2(t− τ)]}ẋ(t)dt

(2.32b)
by applying the Tylor expansion on [x(t) − x(t − τ)] and truncating o(τ 2), [x(t) − x(t − τ)] can
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be approximated as [τ ẋ(t)], yielding

AS(τ) ≈
∫ t1

t0

(1− γ)K[x(t)− x(t− τ)]ẋ(t)dt+

∫ t1

t0

ζhτ [x2(t) + x(t)x(t− τ) + x2(t− τ)]ẋ2(t)dt

(2.32c)
AS(τ) ≈ AL(τ) + ∆AS(τ). (2.32d)

Knowing that ∀x(t), τ and ζhτ < 0 : ζhτ [x2(t) + x(t)x(t− τ) + x2(t− τ)]ẋ2(t) ≤ 0 yields

∆AS(τ) ≤ 0 (2.33a)

AS(τ) ≤ AL(τ). (2.33b)

Thus, the enclosed area in Fig. 2.8a (i.e. the additional energy for strain-softening systems) is
always smaller than the enclosed area in Fig. 2.8b (i.e. the additional energy for linear systems).

Strain-Hardening Systems
In Eq. (2.30), strain-hardening systems correspond to systems with h>0. Therefore, the enclosed
area in Fig. 2.8c can be computed as

AH(τ) =

∫ x(t1)

x(t0)

{(1− γ)K[x(t)− x(t− τ)] + ζh[x3(t)− x3(t− τ)]}dx (2.34a)

AH(τ) =

∫ t1

t0

[x(t)− x(t− τ)]{(1− γ)K + ζh[x2(t) + x(t)x(t− τ) + x2(t− τ)]}ẋ(t)dt

by applying the Tylor expansion on [x(t) − x(t − τ)] and truncating o(τ 2), [x(t) − x(t − τ)] can
be approximated as [τ ẋ(t)], yielding

AH(τ) ≈
∫ t1

t0

(1− γ)K[x(t)− x(t− τ)]ẋ(t)dt+

∫ t1

t0

ζhτ [x2(t) + x(t)x(t− τ) + x2(t− τ)]ẋ2(t)dt

(2.34b)
AH(τ) ≈ AL(τ) + ∆AH(τ). (2.34c)

Knowing that ∀x(t), τ and ζhτ > 0 : ζhτ [x2(t) + x(t)x(t− τ) + x2(t− τ)]ẋ2(t) ≥ 0 yields

∆AH(τ) ≥ 0 (2.35a)

AH(τ) ≥ AL(τ). (2.35b)
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Figure 2.9: Additional energy added to the system due to time delay in the restoring force.

Thus, the enclosed area in Fig. 2.8c (i.e. the additional energy for strain-hardening systems) is
always larger than the enclosed area in Fig. 2.8b (i.e. the additional energy for linear systems). In
Fig. 2.9, for a given τ , AS(τ), AL(τ), and AH(τ) are compared, and clearly

AH(τ) ≥ AL(τ) ≥ AS(τ). (2.36)

For weakly-nonlinear systems, the system can be linearized about its fixed point and using the
RTHS stability switch criterion, a value for critical time delay can be obtained. However, it should
be noted that depending upon whether the system exhibits softening or hardening behavior, the
obtained value is underestimated or overestimated, respectively. Therefore, for weakly-nonlinear
systems with softening behavior, the obtained value is a conservative value. Furthermore, AL(τ)−
AS(τ) and AH(τ) − AL(τ) are linearly proportional to ζhτ . Thus, the level of nonlinearity and
damping of the reference structure determine the level of overestimation or underestimation of the
critical time delay value obtained using the RTHS stability switch criterion.

35



Chapter 3

Performance

In this chapter, the objective is to propose a new performance indicator, the predictive performance
indicator (PPI), to predict the performance of an RTHS system prior to its implementation. Thus,
the PPI belongs to the first category of RTHS indicators (i.e. pre-experiment indicators). In this
category, indicators are computed prior to an experiment (pre-experiment) to enable a researcher to
predict the susceptibility of an RTHS configuration to any systematic or random sources of error.
The PPI assesses how transfer system dynamics and computational/communication delays, which
are the significant sources of systematic experimental error in RTHS, distort RTHS responses and
how the corresponding error propagates through the entire RTHS. This indicator is developed in a
way to be reconcilable with the RTHS stability switch criterion.

3.1 Impact of Delay on Modal Characteristics

It has been shown that when a time delay is present in the system, the effect of that delay is
similar to that of negative damping. The concept of effective damping was first applied to RTHS
in (Horiuchi et al., 1996, 1999). This interpretation of the impact of time delay has been used by
several other researchers as well, for example see (Mosqueda et al., 2007a; Ahmadizadeh, 2007;
Gao, 2012). For instance, Mosqueda, et al. considered the following partitioning of a SDOF linear
system

Mẍ(t) + Cẋ(t) = −Mẍg(t)− Ffb(t− τ) (3.1a)

Ffb(t) = Kx(t). (3.1b)

To investigate the impact of time delay in this system, they compared the dynamics of the delay
frequency response and the frequency response of the reference system and showed that this SDOF
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RTHS system can be approximated as

Mẍ(t) + C ′ẋ(t) +Kx = −Mẍg(t) (3.2)

where C ′ = 2ζeffωn and ζeff is a function of damping ratio (ζ), natural frequency of the reference
structure (ωn), and time delay (τ ). Mosqueda, et al. showed that

ζeff =

√
ζ2 − ζ sin(τωn) +

1− cos(τωn)

2
. (3.3)

It should be noted that in the derivation of Eq. (3.3), they assumed that the resonant peaks of
the reference structure and the RTHS system occur at the same frequency. Eq. (3.3) provides an
effective damping corresponding to a particular partitioning configuration shown in Eqs. (3.1a) and
(3.1b).

Let’s systematically consider the impact of system partitioning in a general partitioning con-
figuration by utilizing the three parameters, α = Mn/M , β = Cn/C, and γ = Kn/K. Consider
the SDOF RTHS system, Eqs. (2.2a) and (2.2b), and divide them by M , yielding

{αẍ(t)+2βζωnẋ(t)+γωn
2x}+{(1−α)ẍ(t)+2(1−β)ζωnẋ(t)+(1−γ)ωn

2x} = −ẍg(t). (3.4)

With a Fourier transform of Eq. (3.4), the frequency response function of the partitioned system,
x(jω) is obtained as

x(jω) =
−1

ωn2CN + ωn2CP e−jτω
ẍg(jω) (3.5)

where
CN = −α(ω/ωn)2 + j2βζ(ω/ωn) + γ (3.6a)

CP = −(1− α)(ω/ωn)2 + j2(1− β)ζ(ω/ωn) + (1− γ). (3.6b)

Eq. (3.5) can be normalized with respect to ωn, as

ω2
nx(jω) =

−1

CN + CP e−jτω
ẍg(jω). (3.7)

Using the values introduced in the preceding chapter, φ = ω/ωn and Ω = τωn, Eqs. (3.6a) and
(3.6b) can be written as

CN = −αφ2 + j2βζφ+ γ (3.8a)

CP = −(1− α)φ2 + j2(1− β)ζφ+ (1− γ). (3.8b)
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Furthermore,
e−jτω = e−jΩφ (3.9)

and the normalized characteristic equation of the SDOF RTHS in Eq. (3.4) becomes

Γ(φ,Ω) = {(−αφ2 + γ) + [(α− 1)φ2 + (1− γ)] cos(Ωφ) + (2ζ(1− β)φ) sin(Ωφ)}
+{(2ζβφ) + [2ζ(1− β)φ] cos(Ωφ) + [(1− α)φ2 − (1− γ)] sin(Ωφ)}j

(3.10)

where the normalized characteristic equation of the reference structure in Eq. (2.1) can be ex-
pressed as

Γ(φ) = −φ2 + j2ζφ+ 1. (3.11)

By comparing the roots of Eq. (3.10) and Eq. (3.11), a SDOF RTHS shown in Eq. (3.4) can be
approximated as

ẍ(t) + 2ζeffωnẋ(t) + ωn
2x = −ẍg(t) (3.12)

where, the effective damping becomes

ζeff =
√
A0 + A1ζ + A2ζ2 (3.13)

and
A0 = 0.5(γ − α)2(1− cos(Ω))

A1 = sin(Ω)(γ − α)

A2 = 1 + 2β(1− cos(Ω))(β − 1).

(3.14)

It should be noted that in the derivation of Eq. (3.13), the assumption is that the resonant peak in
Eq. (3.5) occurs in the close vicinity of ωn meaning that the presence of delay in the feedback
force signal does not affect the value of natural frequency (ωn) significantly.

3.2 Predictive Performance Indicator (PPI)

In this section, we use the frequency response function of error in SDOF RTHS due to time delay, to
establish a new performance metric. The proposed metric is a function of the steady state variance
of error subject to band-limited white noise and natural frequency of the reference structure (ωn).
The frequency response function of the reference structure in Eq. (2.1) can be expressed as

xREF (jω) =
−ẍg(jω)

−ω2 + 2jζωnω + ωn2
. (3.15)
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Eq. (3.15) can be normalized with respect to ωn as follows

xREF (jφ) =
−1

ωn2CR
ẍg(jφ) (3.16)

where
CR = −(ω/ωn)2 + 2jζω/ωn + 1 = −φ2 + 2jζφ+ 1. (3.17)

From Eq. (3.5), the normalized frequency response function of SDOF RTHS can be expressed as

xRTHS(jφ,Ω) =
−1

ωn2[CN + CP e−jΩφ]
ẍg(jφ). (3.18)

Here, it should be noted that in the absence of a feedback time delay, the frequency response of
RTHS, xRTHS(jφ,Ω), and that of the reference structure, xREF (jφ), are identical. For τ = 0 (i.e.
Ω = τωn = 0), ejΩφ becomes 1. Therefore,

xREF (jφ) = xRTHS(jφ, 0) =
−1

ωn2[CN + CP × 1]
ẍg(jφ) =

−1

ωn2CR
ẍg(jφ). (3.19)

However, for τ 6= 0, the frequency response function of the error due to the presence of time delay
in the feedback force signal can be expressed as

HERR(Ω, φ) =
xREF (jφ)− xRTHS(jφ,Ω)

ẍg(jφ)
=

CP (1− e−jΩφ)

ω2
nCR(CN + CP e−jΩφ)

. (3.20)

The autospectral density of the error is

SERR(Ω, φ) = Sg(φ)|HERR(Ω, φ)|2 = Sg(φ)HERR(Ω, φ)H∗ERR(Ω, φ) (3.21)

where {. . .}∗ and Sg represent the complex conjugate of {. . .} and autospectral density (or power
spectral density) of the ground acceleration, respectively. It should be noted that Sg is frequency-
dependent for eqrthquake histories and constant for white noise ground accelerations. The steady-
state variance of the error is related to the autospectral density as follows

σ2 = lim
r′→∞

1

2π

∫ r′

−r′
SERR(ω) dω. (3.22)
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Next, we introduce a new variable IERR, defined as

IERR = ω2
nHERR =

CP (1− e−jΩφ)

CR(CN + CP e−jΩφ)
. (3.23)

Thus, using Eqs. (3.21) - (3.23), the steady-state variance of the error presented in a stationary
SDOF RTHS becomes

σ2 = lim
r′→∞

1

2π

∫ r′

−r′
Sg|HERR|2 dω = lim

r′→∞

1

2πω4
n

∫ r′

−r′
Sg|IERR|2 dω. (3.24)

With a change of variable, Eq. (3.24) becomes

σ2 = lim
r→∞

1

2πω3
n

∫ r

−r
Sg|IERR|2 dφ (3.25)

where r = r′/ωn. Taking advantages of the symmetry of autospectral density and constant au-
tospectral density of white noise ground acceleration input, we propose a performance metric,
predictive performance indicator (PPI), as

PPI = lim
r→∞

1

π

∫ r

0

|IERR|2 dφ = ω3
nσ

2S−1
g . (3.26)

Eq. (3.26) indicates that the steady-state variance of the error can be found by computing the area
under the normalized autospectral density function of the error. Usually, the peak of |IERR|2(π)−1

occurs at φ ≈ 1 which corresponds to ω ≈ ωn and the frequency bandwidth of interest is the
seismic frequency bandwidth and it is restricted to a low frequency bandwidth (0 < ω < ωs).
Therefore, as shown in Fig. 3.1, for r ≈ ωs/ωn, ω3

nσ
2/Sg is approximated as

PPI =
1

π

∫ r

0

|IERR|2 dφ ≈ ω3
nσ

2/Sg. (3.27)

To derive the PPI in Eq. (3.26), we chose delta-correlated white noise ground acceleration with a
constant autospectral density (Sg) over the whole spectrum. However, it should be noted that, for
any specific seismic record, a similar indicator can be produced using the following equation

PPI ′ =
1

2π

∫ r′ω−1
n

0
Sg(φ)|IERR|2 dφ∫ r′ω−1
n

0
Sg(φ) dφ

≈ ω3
nσ

2[

∫ r′ω−1
n

0

Sg(φ) dφ]−1 (3.28)
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φ = r

φ = ωωn
−1

|I
E
R
R
|2
(π
)−

1

φ ≈ 1

area ≈ ωn
3σ2S−1

g

Figure 3.1: PPI is the area under the normalized autospectral density function.

where S ′g is the frequency-dependent auto-spectral density of the seismic input and [0, r′] is the
corresponding seismic bandwidth.

3.2.1 Performance Diagrams for a Linear SDOF RTHS

In this section, we illustrate how the values of the partitioning parameters, transfer system perfor-
mance, and the structural characteristics of the reference structure affect the performance of a linear
RTHS system using the proposed metric, the PPI. Varying four different parameters (α, β, γ, and
ζ), nine different partitioning cases, listed in Table 3.1, are considered and the corresponding PPI
values are plotted in Fig. 3.2. Furthermore, using the RTHS stability switch criterion, (Maghareh
et al., 2013), the stability diagrams associated with each partitioning case are plotted. It should be
noted that a lower PPI indicates more reliability of the RTHS results. Clearly, this performance
analysis is only valid for the stable region that is the area to the left of the stability switch curve
(Ω < Ωcr).

Table 3.1: Partitioning parameters of the nine cases examined

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

α ∈ [0, 1] 0.8 0.95 ∈ [0, 1] 0.8 0.8 ∈ [0, 1] 0.8 ∈ [0, 1]

β 0.5 0.5 0.5 0.5 0.5 ∈ [0, 1] 0.5 0.5 0.5

γ 0.1 ∈ [0, 1] ∈ [0, 1] 0.1 ∈ [0, 1] 0.1 0.1 ∈ [0, 1] 0.25

ζ 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.04 0.04
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(a) β = 0.5, γ = 0.1, ζ = 0.01 (b) α = 0.8, β = 0.5, ζ = 0.01 (c) α = 0.95, β = 0.5, ζ = 0.01

(d) β = 0.5, γ = 0.1, ζ = 0.02 (e) α = 0.8, β = 0.5, ζ = 0.02 (f) α = 0.8, γ = 0.1, ζ = 0.02

(g) β = 0.5, γ = 0.1, ζ = 0.04 (h) α = 0.8, β = 0.5, ζ = 0.04 (i) β = 0.5, γ = 0.25, ζ = 0.04

Figure 3.2: Performance/stability diagrams of the nine cases listed in Table 3.1.

Some important observations can be made from Fig. 3.2.

• As a rule of thumb, the PPI is closely related to the value of |γ − α|. For a specific transfer
system performance, designing an experiment to have a smaller value of |γ−α| usually leads
to a lower PPI and better performance.

• For a specific transfer system performance, a reference structure with a higher damping leads
to a more successful simulation. To see the impact of the reference structure’s damping (ζ),
one can compare Figs. 3.2a, 3.2d, and 3.2g or Figs. 3.2b, 3.2e, and 3.2h.

• The overall success of an RTHS is almost independent of how the reference structure’s damp-
ing is partitioned (β factor) between the numerical and physical substructures, see Fig. 3.2f.
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• To achieve a better performance in conducting SDOF RTHS with a specific transfer system,
decreasing |γ − α|, ωn and/or increasing ζ are effective options.

• To conduct a successful RTHS, the partitioning configuration needs to be sufficiently away
from the stability switch curve.

• Generally speaking, conducting an RTHS with a small value of γ (i.e. more stiffness in the
physical substructure) and a large value of α (i.e. more mass in the numerical substructure)
is the most challenging configuration, see Figs. 3.2a, 3.2b, 3.2c, and 3.2f.
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Chapter 4

Illustrative Examples

To illustrate the utility of the PSI and PPI, we have provided three different types of examples,
virtual RTHS with pure time delay, virtual RTHS with time delay and transfer system dynamics,
and an actual RTHS example. Herein, virtual RTHS (vRTHS) referes to performing RTHS on
a real-time virtual platform (e.g. xPC target and dSPACE) where the physical substructure(s),
transfer system, and communication system are all modeled numerically to mimic a real-time
virtual simulation of the RTHS itself.

4.1 Virtual RTHS with Pure Time Delay

A simple way to conduct vRTHS is to lumpt the transfer system dynamics, communication and
computational delays are all lumped into a single time delay (τ ), see Fig. 4.1.

Figure 4.1: Virtual RTHS with pure time delay.

In this section, the results of 2000 realizations of vRTHS(s) with pure time delay are shown to
verify that, (1) the PPI is independent of the power of the input ground acceleration and (2) the PPI
is a function of the value of Ω = τωn and not the value of τ or ωn, independently. Furthermore,
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(a) α = 0.8, β = 0.5, ζ = 0.01 (b) α = 0.8, β = 0.5, ζ = 0.04

Figure 4.2: Indication of vRTHS cases on the performance/stability diagrams.

the impact of |γ − α|, ζ , and Ω, which are the most influential parameters on the PPI, is investi-
gated. In this study, eight different cases, listed in Table 4.1, are selected and each case is virtually
simulated in MATLAB using 125 different values of τ and two band-limited white noise inputs
(with autospectral density of Sg = 1 m2sec2 and Sg = 2 m2sec2). So, a total of 2000 vRTHS are
conducted (8× 2× 125). In Fig. 4.2, these eight cases are indicated on the performance diagrams.

Table 4.1: Simulation case studies (α = 0.8 and β = 0.5)

γ ζ Ω PPI

Case 1 0.8 0.01 0.05 9.1× 10−3

Case 2 0.65 0.01 0.05 3.5× 100

Case 3 0.8 0.01 0.1 3.6× 10−2

Case 4 0.65 0.01 0.1 5.1× 101

γ ζ Ω PPI

Case 5 0.8 0.04 0.05 2.3× 10−3

Case 6 0.65 0.04 0.05 3.4× 10−2

Case 7 0.8 0.04 0.1 9.1× 10−3

Case 8 0.65 0.04 0.1 1.6× 10−1

In Fig. 4.3, the ω3
nσ

2/Sg values obtained from the vRTHS results are compared with the corre-
sponding PPI values using Eq. (3.27). Each subfigure shows two sets of results corresponding to
the two input ground accelerations. Some important observations can be made from Fig. 4.3.

• PPI is independent of the power of the input ground acceleration. As one can see in Figs. 4.3a-
4.3h, the PPI values are independent of which input ground acceleration is chosen.

• In each subfigure, the value of Ω = τωn is constant, yet, τ and ωn vary dependently (i.e.
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τ = Ω/ωn). The results indicate that the PPI is a function of the value of Ω and not the value
of τ or ωn, independently.

• A smaller values of |γ − α| and ωn leads to a smaller PPI which corresponds to a more
successful RTHS.

• A larger value of ζ leads to a smaller PPI value which corresponds to a more successful
RTHS.

1 5 9 13 17 21 25 291E-4
1E-3
0.01
0.1
1

10
100 50.0 10.0 5.6 3.8 2.9 2.4 2.0 1.7

 n (rad.sec-1)

n3
2 S

-1 g

 (msec)

(a) Case 1: Ω = τωn = 0.05
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(b) Case 2: Ω = τωn = 0.05
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(c) Case 3: Ω = τωn = 0.1
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(d) Case 4: Ω = τωn = 0.1
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(e) Case 5: Ω = τωn = 0.05
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(f) Case 6: Ω = τωn = 0.05
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Figure 4.3: Comparisons of the simulated values of ω3
nσ

2S−1
g associated with various partitioning

choices with the corresponding PPI values.

4.2 Virtual RTHS with Transfer System Dynamics

In this section, to conduct a more realistic vRTHS, actual transfer system dynamics are embedded
in vRTHS, see Fig. 4.4. Therefore, two controlled servo-hydraulic actuators were identified at the
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Figure 4.4: Virtual RTHS with transfer system dynamics.

Intelligent Infrastructure System Lab (IISL) at Purdue University. The identified dynamics of the
two servo-hydraulic actuators (i.e. command displacement to measured displacement) are,

TS1 =
xmsd(ω)

xcmd(ω)
=

2.382× 109

ω4 − j485.5ω3 − 1.317× 105ω2 + j3.182× 107ω + 2.382× 109
(4.1)

TS2 =
xmsd(ω)

xcmd(ω)
=

4.520× 109

ω4 − j577.1ω3 − 2.680× 105ω2 + j6.282× 107ω + 4.930× 109
(4.2)

and, the corresponding magnitude and phase plots are as follows.
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Figure 4.5: Frequency responses of the hydraulic actuator (TS1) and a pure time delay system.
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Figure 4.6: Frequency responses of the hydraulic actuator (TS2) and a pure time delay system.

In this study, 198 vRTHS(s) listed in Table 4.2 were conducted in which the input is a band-
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limited white noise with the Gaussian distribution (signal power = 1) and natural frequency of the
reference structure (ωn) is the variable. In the first set of vRTHS, 99 vRTHS(s) are conducted
with the partitioning choice No.1 and the transfer system 1 (TS1). In the second set of vRTHS, 99
vRTHS(s) are conducted with the partitioning choice No.2 and the transfer system 2 (TS2).

Table 4.2: Partitioning choices

Choice No. α β γ ζ Computational Delay Communication Delay

1 0.8 0.5 0.8 0.01 8192−1 4096−1

2 0.9 0.5 0.9 0.02 2048−1 1024−1
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Figure 4.7: Comparisons of the σ2ω3
nS
−1
g values obtained from vRTHS(s) with the corresponding

PPI values.

In Fig. 4.7, the σ2ω2
n/Sg values resulting in the vRTHS(s) are compared with the corresponding

PPI. The comparisons show that the PPI can be also effectively used when transfer system dynam-
ics (not transfer system delay), computational delays, and communication delays are all considered
in vRTHS.

4.3 An RTHS Case Study

In this section, we conduct a pure physical (shake table) testing of a SDOF structure (i.e. the
reference structure), a simulation of the reference structure (i.e. reference model), and an RTHS.
The objective is to utilize the proposed RTHS predictive stability indicator (PSI) together with the
predictive performance indicator (PPI) to conduct a successful RTHS where, (1) the performance of
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the transfer system (i.e. a servo hydraulic actuator) is controlled (or compensated) relatively poorly,
see Fig. 4.11, (2) the reference structure has a relatively large natural frequency (ωn = 32.9 rad

sec
)

and it is lightly damped (ζ = 0.014), see Fig. 4.4. In this experiment, that Ω = τωn is relatively

Figure 4.8: Real-time hybrid simulation.

large and ζ is relatively small make conducting a successful RTHS challenging. The sampling
frequency, computational delay, communication delay, and approximated transfer system delay
are 4096 Hz, 0.12 msec, 0.24 msec, and 14.4 msec, respectively. Having assigned ζ and Ω, the
only influential parameter which can increase the PSI, reduce the PPI, and eventually enables a
more successful RTHS is |γ − α|.

First, a comparison is made between the shake table response of the reference structure and the
response of its SDOF model while the exciting input is chosen to be the ChiChi earthquake history
with the peak ground acceleration (PGA) of 0.061g, see Fig. 4.9. Validation of the reference model
is necessary to obtain reliable values for {M,C,K}REF and eventually {α, β, γ}.
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Figure 4.9: ChiChi earthquake ground acceleration with PGA = 0.061g.

Fig. 4.10 shows the comparison of the shake table response of the reference structure and the
response of the reference model. To quantify the associated modeling error, the following error

49



4.3. AN RTHS CASE STUDY Maghareh, et al.

0 5 10 15 20
−100

−80

−60

−40

−20

Freq.(Hz)

Po
w

er
(d

B
)

 

 

Reference Model
Pure Physical (Shake Table Testing)

(a) Accelerations in Frequency Domain

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

Time (sec)

A
cc

 (
g)

(b) Accelerations in Time Domain

28 30 32 34 36 38

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

A
cc

 (
g)

(c) Accelerations in Time Domain (zoomed-in)

17 18 19 20 21 22

−0.2

−0.1

0

0.1

0.2

Time (sec)
A

cc
 (

g)

(d) Accelerations in Time Domain (zoomed-in)

Figure 4.10: Comparison of the responses of the reference model with those of the pure physical
(shake table) testing in the frequency and time domains.

indicator is utilized.

NRMSE% =
RMS[ẍSIM(t)− ẍPHY (t)]

max[ẍPHY (t)]−min[ẍPHY (t)]
× 100 (4.3)

The corresponding normalized root-mean-square error (NRMSE) is 0.9%. The low NRMSE along
with an excellent agreement in the frequency domain, see Fig. 4.10a, verify the fidelity of the
reference model.

Table 4.3: Reference and substructures’ characteristics

Reference Physical Numerical Partitioning Parameter

M(kg) 98.4 24.6 73.8 α = 0.75

C(N.s.m−1) 88.7 15.8 72.9 β = 0.82

K(N.m−1) 10.67× 104 2.67× 104 8.00× 104 γ = 0.75

Next, to conduct RTHS, we first evaluate the performance of the transfer system. In Fig. 4.11,
the frequency responses of the hydraulic actuator identified using band-limited white noise input
and a pure time delay system are shown. After identifying the reference structure and transfer sys-
tem performance, we are ready to partition the reference structure and utilize the RTHS stability
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Figure 4.11: Frequency responses of the hydraulic actuator and a pure time delay system.

Figure 4.12: Physical substructure and transfer system used in this RTHS example.

switch criterion and the predictive stability and performance indicators. The structural characteris-
tics of the reference structure, the physical substructure, and the numerical substructure are listed
in Table 4.3. This RTHS configuration, {ζ , ωn, α, β, γ} = {1.37%, 32.9 rad

sec
,0.75, 0.82, 0.75}

minimizes the value of |γ − α| which enables a more successful RTHS.
In the RTHS setup shown in Fig. 4.8, {fs, τCOMP , τCOMM , τTS} is set to be {4096 Hz, 0.12

msec, 0.24 msec, 14.4 msec}. Thus, the feedback time delay can be approximated as 14.8 msec.
By knowing τ , ωn, and the partitioning parameters, one can locate the corresponding RTHS case
on the RTHS stability diagram. In Fig. 4.13, the case is indicated with a blue cross-mark and
labeled as RTHS (Experimental Case). Using the PSI, one can predict that the partitioning choice
in Table 4.3 and Ω = 0.49 leads to unconditional stability (PSI = ∞). As shown in Fig. 4.13,
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Figure 4.13: Location of the RTHS case study and simulation cases on the RTHS stability diagram.

Ω = τωn = 0.49 divides the diagram into two sections, feasible region (0.69 < γ < 1) and
infeasible region (0 < γ < 0.69), and the RTHS case study in Table 4.3 lies within the feasible
region (γ = 0.75).

In Fig. 4.14a, the RTHS case is indicated on the performance diagram. Fig. 4.14a also shows
that, from performance perspectives, for these specific values of α, β, ζ , and Ω, γ = α = 0.75 is the
best choice since it minimizes the predictive sperformance indicator (PPI = 0.205). Furthermore,
in Fig. 4.14b, γ is plotted versus (ζ− ζeff )×103 in which ζeff is obtained using Eq. (3.13) and the
reference structure’s damping (ζ) is 0.014. Fig. 4.14b confirms that for the specified values of α,
β, ζ , and Ω, γ = α = 0.75 is the best choice (i.e. ζeff ≈ ζ). With this configuration, even though
τ is relatively large, RTHS can be effectively conducted with accurate results.

Finally, an RTHS is conducted with the partitioning parameters listed in Table 4.3. The RTHS
set-up is shown in Fig. 4.12 and the comparison of the RTHS results with the reference model
results are shown in Fig. 4.15. To quantify the error developed in the RTHS results, the following
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post-experiment indicator is used.

NRMSE% =
RMS[xSIM(t)− xRTHS(t)]

max[xSIM(t)]−min[xSIM(t)]
× 100 (4.4)

Using Eq. (4.4) leads to an NRMSE of 0.8%. Having a low NRMSE value shows that conducting
an RTHS with a low PPI value leads to a successful RTHS despite being restricted to a poor trans-
fer system performance, the reference structure being lightly damped, and the reference structure
having a relatively large natural frequency. Therefore, the proposed predictive indicators can be
used as effective pre-experiment metrics in conducting SDOF RTHS.
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Figure 4.14: Selection of a Partitioning Parameter (γ) Using the RTHS Performance Diagram and
the proposed Effective Damping.
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Figure 4.15: Comparison of the reference model and RTHS responses (relative displacements) of
the single story structure in the time and frequency domains.
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Chapter 5

Conclusion

In this study, new predictive (or pre-experiment) stability and performance indicators, the PSI and
PPI, have been proposed to accommodate the impact of partitioning choices while considering the
dynamics of transfer system, and the computational and communication delays. To fully lever-
age the capabilities of RTHS, guidelines are needed to address some key issues associated with
its use. In this work, the major issues investigated are the minimum requirements of the transfer
system control, the minimum required sampling frequency, the structural characteristics of the ref-
erence structure, the most effective changes to stabilize an unstable simulation due to the transfer
system limitations, and nonlinearity in the physical substructure. Moreover, this study introduced
the RTHS stability switch criterion which serves as an experimental design guideline associated
with the minimum stability/control requirements to conduct a successful RTHS. With respect to
the selection of partitioning parameters and the sources of systematic error, these metrics enable
researchers to predict the stability margin and the expected accuracy of SDOF RTHS in the pres-
ence of reference responses. Moreover, in the absence of reference responses, the PPI can be used
to effectively assess the accuracy of the results. Using the proposed predictive stability indicator
along with the predictive performance indicator, we have been able to develop the normalized per-
formance/stability diagrams appropriate for developing SDOF RTHS guidelines and acceptance
criteria. In this study, the use of the proposed indicators is demonstrated in the three illustrative
examples, vRTHS with pure time delay, vRTHS with time delay and transfer system dynamics,
and an experimental SDOF RTHS. The results show that the PSI and PPI can be effectively used
to predict the susceptibility of a SDOF RTHS configuration to transfer system dynamics and com-
putational/communication delays.
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